Apicultura Wiki
Advertisement

Un material ortotrópico tiene tres diferentes propiedades en tres diferentes direcciones perpendiculares entre si, y tiene solo tres planos perpendiculares entre si que definen la simetría de las propiedades del material. Un material ortotrópico, tendrá tres diferentes propiedades del material en las direcciones X, Y, Z. Por ejemplo, el módulo de Young se tendrá que definir en tres direcciones: Ex, EY, Ez. Por lo tanto, los planos XY, YZ y ZX deben formar los planos de simetría de las propiedades del material. Un material ortotrópico también puede ser homogéneo o heterogéneo. En un cuerpo ortotrópico homogéneo, las propiedades del material en una dirección particular serán las mismas en todos los puntos dentro del cuerpo, mientras que en un cuerpo ortotrópico heterogéneo las propiedades del material en una dirección particular serán diferentes en cualquier otro punto del material en el cuerpo. Algunos materiales elásticos son anisótropos, lo cual significa que su comportamiento elástico, en concreto la relación entre tensiones aplicadas y deformaciones unitarias es diferente para diferentes direcciones. Una forma común de anisotropía es la que presentan los materiales elásticos ortotrópicos en los que el comportamiento elástico queda caracterizado por una serie de constantes elásticas asociadas a tres direcciones mutuamente perpendiculares. El ejemplo más conocido de material ortotrópico es la madera que presenta diferente módulo de elasticidad longitudinal (módulo de Young) a lo largo de la fibra, tangencialmente a los anillos de crecimiento y perpendicularmente a los anillos de crecimiento. El comportamiento elástico de un material ortotrópico queda caracterizado por nueve constantes independientes: 3 módulos de elasticidad longitudinal (Ex, Ey, Ez), 3 módulos de elasticidad transversal (Gxy, Gyz, Gzx) y 3 coeficientes de Poisson (νxy, νyz, νzx). De hecho para un material ortotrópico la relación entre las componentes del tensor tensión y las componentes del tensor deformación viene dada por:


Donde:

Como puede verse las componentes que gobiernan el alargamiento y las que gobiernan la distorsión están desacopladas, lo cual significa que en general es posible producir alargamientos en torno a un punto sin provocar distorsiones y viceversa. Las ecuaciones inversas que dan las deformaciones en función de las tensiones toman una forma algo más complicada:

Donde:

De hecho la matriz anterior, que representa al tensor de rigidez, es simétrica ya que de las relaciones (*) se la simetría de la anterior matriz puesto que:

Advertisement